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akTk* - $$ bkT<) p-rn = N + UJ - i ckUik (Cr = ‘k + bk) 
k=l k=l 

Since N is chosen orthogonal to @ and @k, from (11) and (13) we find that N 
Moreover, from Eq. (20) it then follows that 

k=l 

(20) 

0 . 

From the results obtained we have, as particular cases, the corresponding theorem for 

the points of constant mass [Z] and the proper Bonnet theorem [1]. Just as it was done 
in [Z], the results obtained can be applied to the study of motion of points of variable 

mass in a gravitational field of two fixed centers. 
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CONVEX SHELLS 

Conditions for the realization of the membrane state of equilibrium of multiply- 
connected shells of positive Gaussian curvature subjected to surface and edge 
forces, are investigated ; the concepts of correctness and stability of the mem- 
brane states are introduced. The terminology and notation correspond to that 

used in [l, 21. 

1. Let the middle surface S of a multiply-connected shell of positive Gaussian 
curvature be referred to an isometrically conjugate curvilinear coordinate system z’, xB 
and let us write its equation in the vector form r = I’ (z*, z”). Relative to the regularity 
of the shell we assume that S e Dh.+L;,I,, p > 2, h- > 0. The middle surface S and its 

outline I, = L, + I,,+ . . . i-L,,, in the coordinate plane 5 = 11 + i~2 are a domain 

G with the boundaries 1‘ = I’” f I, + . . . +I,, in a homeomorphic way. The lines 

of the holes in the shell Lq, L,, . . . . L,,, are closed, three-dimensional, nonreentrant 

curves of the Liapunov class. A z’, x2 coordinate system can always be found so that 

the point 5 = 0 would belong to the interior ofthedomain G and the contour F0 
would enclose all the other curves Fl, . . . . F,. Finally, the second quadratic form of the 
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surface S in the isosymmetrically conjugate X+,Z 2 coordinate system has the canonic 

form : r/ gK [ (czz’)~ + (&2)2], i. e. the coefficients of this form are connected by the 
relationships: bll = b,, = Jf/gK, b 12 = bzl = 0. Here g and K are, respectively, the 

discriminant of the first quadratic form of the surface S and its Gaussian curvature. 

In tensor notation the system of equations of membrane shell theory is the following 

c31: I/s (y’ll + 7’“) + z ‘Z 0 

a+ 
F + rz,TAp + r&T” + .+ = 0 (P=l,2) 

where Pa is the contravariant stress resultant tensor, Xb are the 
nents of the surface load X, % is its normal component, l’ij is 
of the second kind for the surface S. If the stress resultant Th is 
system and the complex stress function is introduced by means of 
iT’“),then we obtain an equation of Carleman type for it 

Here 

contravariant compo- 
the Christoffel symbol 
eliminated from this 

w(e)- PlP- 

Let us seek the solution of (1.1) in the class of generalized analytic functions conti- 
nuous in G -+ r . It has been shown in [3] that if a stress resultant T, is applied along 

the contour L of a membrane shell, then it is expressed in terms of the boundary values 
of the desired function W by means of the formula 

(1.2) 

Here s is a natural parameter of the contour L and f 1, r2 are vectors of the fundamen- 

tal basis on the middle surface S. 
Let n and s , respectively, denote the directions of the normal at an arbitrary point of 

the surface S and of the tangent to the contour L. Then the vector 1 = [SX II] becomes 

the direction of the tangential normal along the shell contour 1,. 

2. We consider the following problem from shell theory. Let a specified surface load 
S .\.ar,l 1. %:I and some edge stress resultant ‘I’!. relative to which only the compo- 
nent in the direction h, forming an angle (p (s) with the dirction of the tangent s to the 
line 1. is known, act on the shell. Without determining the second component of the 
stress resultant ‘I’,>, it must be established whether the shell is in the membrane state 
under the effect of external forces given in such a manner. These problems are often 
encountered in engineering. In practice, the fact that stress concentrations originate in 
a definite zone near the hole in a shell,for whose determination there are a number of 
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effective methods [4], is certainly taken into account. 
We shall show that the formulated problem reduces to the solution of a Riemann-Hil- 

bert boundary value problem in the class of generalized analytic functions. Indeed, let 
us multiply 

of the edge 
both sides of (1.2) scalarly by 5 and let f = T,X denote a given component 
stress resultant T,. Then (1.2) is converted into the form 

(2.1) 

Here h’is the unit vector conjugate to k which is tangent to the middle surface S, where 
[M..‘] = n.The formula 

l/z dr -- 
I dh’ = hl + i?‘.z 

was used to derive (2. l), where 1,, h, are covariant components of h. 
The following Riemann-Hilbert boundary value problem has therefore been obtained : 

find the generalized analytic function W from (1.1) which is continuous in G + I’ and 

satisfies the boundary condition (2.1) on the boundary r of the domain G . 
Let us draw upon the auxiliary, conjugate Riemann-Hilbert boundary value problem 

to investigate this boundary value problem: find the generalized analytic function c’ 

satisfying the equation in the domain G 

a 
F G + ‘4 (5) fJ + B (5) 0 = 0, SEG (U = Ul + iuz) 

5 

which is continuously extendable on the boundary l? and satisfies the condition on the 

boundary r itself 
Re[$li(r)]=O, TEr (2.3) 

The following geometric interpretation can be given to the boundary value problem 
(2,2), (2.3): this is the problem of finding infinitesimal first order bending for the sur- 
face S when covariant components of the displacement field it, u2 along the contour 

L are connected by the relationship (2.3). 

3. Let n, x and n’, x’ , respectively, denote the number of linearly independent 
solutions and the indices of the boundary value problems (1. l), (2.1) - (2.3). We use 
the Vekua theorems (see p], pp.252-257) in application to the boundary value problems 

formulated above. The equality n - n’ = x - x’ = 2x + 1 - m thus holds, where the 

integer m indicates the order of connectedness of the shell. If the index of the problem 
(1. l), (2.1) is negative x < 0: it then admits of solution only when the so-called solva- 
bility conditions are satisfied 

j /U,(“~S+S,SU(~)X~S=O (i=i, . . ..n’) (3.1) 

where U(l), . . . . U(n’) is a complete system of linearly independent displacement fields 

of the middle surface for its infinitesimal bending. 
Now, let us compute the indices of the boundary value problems under investigation. 

We have 
dt 

x = m - 1 - xA,, x’ = Xh’. xX, = Inda 
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Therefore, when XX, < 0, then n’ = 0, n = m - 1--2x,,. Hence it follows that the 

problem (1. l), ,(2.1) is always solvable, and its solution is given by 

m-l-$i~, 

k=l 

Here Ch- are arbitrary real constants, Wi, . . . Wm_1_2Xh, are linearly independent solu- 
tions of the homogeneous problem corresponding to (2. I), (1. l), and W0 is a particular 
solution of the inhomogeneous problem. 

The form of the solution of the boundary value problem shows that m - 1--2x,, mem- 
brane states of equilibrium can be realized for a given system of external forces in the 
shell. We shall say about such a situation that the physical problem is posed quasi-cor- 
rectly. However, by imposing additional conditions of point character it can always be 
achieved that just one definite membrane state wouldoriginate in the shell. For this it 

is sufficient to give the value of two components of the stress resultant vector TL at k 
internal points m,, m2, . . . . mkof the shell and the value of one component of the stress 

resultant T, at k’ points m,‘, m2’, . . . . mk.’ on the contour La The following three con- 
ditions should hence be conserved: (1) An odd number of points must be taken on each 

contour Lj (j = 1, . . . . m); (2) 2k + k’ = 2n -b 1 - m; (3) k’ > m. Then, as the re- 

search of Vekua in p] shows, the Riemann-Hilbert boundary value problem (1.1). (2.1) 
has a unique solution and the problem itself is correct. Correctness of the problem 
means that the shell will work in a definite membrane state for insignificant changes 

in the shell geometry (its shape and size, Gaussian curvature, hole locations, etc.) and 

variations in the external forces. This circumstance implies a unique stability of the 
shell membrane properties. 

Now, let x,., > m - 1, then n = 0, n’ = 2xh, + 1 - m, and the boundary value 
problem (1. l), (2.1) has a negative index. Therefore, 2xh, + 1 - m conditions of the 
form (3.1) should be satisfied for its solvability. It can happen that only trivial bending 
fields enter into (3.1) ; then we obtain the ordinary shell equilibrium conditions which 
hold by the assumption of the problem. If the shell is weakened by more than five holes, 

then there will certainly enter at least one nontrivial bending field into (3. l), and there- 

fore, the realization of the membrane state in the shell will not always be possible. 
Finally, let us examine the case when 0 < x,., < m - 1. This is possible only when 

the shell is weakened by two or more holes (m > 0). For x,., = UL - 1 there are two 

possibilities: (1) n = 0 and (2) a = 1. Then correspondingly: (1) )I’ = m --- i 
and (2) n’ = m. This means that if the shell is weakened by more than two holes 
(m > i), then the boundary value problem (1. l), (2.1) is not correct in both cases. But 
a shell with two holes (m = 1) always realizes a membrane state (and moreover unique) 
in the first case (n = 0) and the corresponding problem is not correct in the second 
case (n = 1). 

4. Let us call the two directions h and h* tangent to the surface S directions of 
the same class if X). = xh*. If the angle (p* between the two vectors h and h* at each 
point of the contour L is such that 1 ‘p* 1 < I-C, then these vectors evidently belong to 
one class. For example, if the vector h belongs to the class of tangents s to the con- 
tour L, then x,, = xh* = x, = 1 - m. Moreover, if the angle q* is a Holder-continu- 
ous function : ‘p* E C, (L) and its norm in the metric C, (~5) satisfies the condition 
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jl cp - v* jlc, < a, where e is a sufficiently small positive number. then it is said that 
the direction h* is a normal perturbation of the direction L. 

In addition to the problem (2. l), (1. l), let us consider the normally perturbed problem 
of the form a -- 

--$v -- ‘4* (5) w - B* (5) w = F* (5), 5fZG 

It is clear that if the boundary problem (1. l), (2.1) is quasi-correct, then the normally 
perturbed problem is also quasi-correct for sufficiently small E. 

In conclusion, let us examine the case when the vector h belongs to the class c. Then 
‘r’ = 2 (m - I). Therefore, x -Z -2, n = 0, 7l’ =z 3 for simply connected shells. This 

means that three conditions of the form (3.1) should be satisfied in order to realize a 
membrane state in a shell with one hole. If the contour L. of the middle surface passes 
along an isometrically conjugate line, then the corresponding surface bendings will be 
trivial B] and the formulated problem has a unique solution. For shells with three or 
more holes the membrane state will be quasi-correct since n = 9 and IZ’ = 3m - 3. 

For doubly connected shells of positive curvature the membrane state cannot always be 
realized ; however, if the hole contours of the shell coincide with isometrically conju- 
gate lines on the middle surface, then such a state is realized unconditionally. 
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The exact solutions given in [l] are generalized to the case of cylindrical and 
spherical sectors rotating about the azimuth relative to the coordinate origin 
either at a uniform rate or with uniform acceleration (or deceleration). The 


